
International Journal of Theoretical Physics, Vol. 35, No. 6, 1996 

Nuclear Calabi-Yau Space 

J. A. de Wet  1 

Received October 30, 1995 

In this note a Calabi-Yau manifold already found for 9Li will be shown to carry 
an Euler number of six if Yang-Mills symmetry is broken. Not only does this 
specify the correct number of generations of quarks and leptons, but peaks on 
the manifold are associated with the lowest eigenvalues of a CP-invariant Dirac 
spin operator CIA I, 

1. INTRODUCTION 

If one seeks a configuration of the form M 4 × K where M 4 is four- 
dimensional Minkowski space and K a compact Riemannian six-dimensional 
manitbld, then the only way of modeling the space-time geometry of 
superstrings is for K to be a Calabi-Yau space, specifically, a compact three- 
dimensional complex manifold with a Ricci flat K~le r  metric. 

De Wet (1995) has shown that a spin manifold that carries an odd 
number of fermions is Calabi-Yau with positive sectional curvature, and 9Li 

was taken as an example where it was found possible to calculate the metric 
tensor and therefore the connections which are the Yang-Mills gauge field 
responsible for the strong, weak, and electromagnetic interactions. This mani- 
fold will also" be found to be a twistor space according to the criteria of 
Lawson and Michelsohn (1989, Chapter IV, §9). The twistor can be shown 
to be a vibrating toms by making use of a theorem introduced in Section 2 
that enables one to exponentiate a CP-invariant Dirac operator CtA I that is a 
function of the spins and parities of any odd-A nucleus. 

Closed geodesics can be generated from the harmonics of exp(ClAI 0) as 
shown in Fig. 1 which depicts a quadrapole. 

Normally the Dirac matrix is a differential operator S such that the 
Laplace-Beltrami operator A is S 2 and the zero modes of S are the harmonic 
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Fig. 1. Geodesics on the manifold of 9Li, 9C. 
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6 4 x  

differential forms o.¢ given by Ao~ = 0. The number of such p forms is the 
Betti number bp, from which it follows that the index of S is half of the 
Euler characteristic X of the manifold (see, for example, Green et al., 1988, 
Chapter 14). 

Although the CP-invariant operator C[A ] is not a differential operator, 
the exp(CtAi0) are harmonics, so it makes sense to determine the Euler 
characteristic of the associated spin manifold and see how × is related to the 
lowest eigenvalues of Cim. This is the purpose of this paper, because ×/2 is 
also the number Ng~, of fermion generations identical in their gauge quantum 
numbers and should be three. 

Actually in the case of a torus × = 0, but by examining the curvature, 
peaks or "horns" can be found associated with the three lowest spins of C[a ] 
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(which label the lowest energy levels). These could represent instantons that 
become quarks or leptons at energies sufficiently high to break Yang-Mills 
symmetry. Then the horns would be singularities with infinite curvature and 
the manifold would become an orbifold with an Euler characteristic of three. 
One possible point is numbered 2 in Fig. 2 and a closed loop around this 
singularity would be trapped and add an Euler characteristic of unity. The 
point 2 can also rotate about X4 = -X5 (Fig. 1) to yield another Euler number 
and there are two similar points 1 and 3, positioned in Fig. 1, to make a total 
of six. Physically the curvature is a measure of the strength of the Yang-Mills 
field, which becomes infinite when the symmetry is broken, and quarks and 
leptons appear at sufficiently high energies. The sectional curvature of the 
9Li manifold is calculated in Section 3. 

2. T H E  MATRIX EXPONENTIAL T H E O R E M  

It was shown by de Wet (1994) that the tensor product of self-representa- 
tions of the quaternion Dirac ring decomposes into left modules C[xlPlhl each 
of which represents a nuclear state [h] with a definite spin, charge, and parity. 
This is called a Dirac bundle by Lawson and Michelsohn and is of course 
an example of the nuclear spectral theorem. Specifically, [h] is a partition 

A = hi + k2 + k3 + h4 ,  [)k] ~ [hl•2)k3)k4] 

of the atomic number such that (h 3 4- h4) is the number of nucleons with 
positive charge, (k2 + h3) the number with a given spin or, and (k2 + h4) 
the number with a given parity "rr. The possible states of 9Li, 9C, which may 
be shown to be coherent, are set out in Table I and these label the rows of 
the (1, 1) form (2.3). 

The operators Ctx 1 may be expressed in terms of the generators 

(Yi = EN • PFi 4- NFi (~ Ep, 7r i = EN ® PFi - -  NF i @ Ee, i = 1, 2, 3 
(2.1) 

of 04. Here el'i, NFi are (P + 1)-, (N + l)-dimensional Lie operators of SO3, 
Ep, EN are ( P  4- 1), (N 4- 1) unit matrices, and cr i is the spin angular 
momentum matrix for a coupled system of P protons and N neutrons. It is 
also an example of the natural decomposition of a Clifford algebra (Lawson 
and Michelsohn) and is why the nucleus can be modeled by quaternions. 

It is then possible to find the specific operator CtA 1 which is also CP- 
invariant. If oo -- 2crl and 'fro -- 2"rrt, then an example is the Wigner series 

1 3 ~ ~Z 
9Li: Ct33031 = ~ (or 3 + ,fro 3) + ~ (~o'rr0 z + %7r o) + __ (er0 + "fro) (2.2a) 

1 (o.3 _ ,rr3 ) + 3 (%,rr02 _ croZ,rro ) + 17 (% _ "fro) (2.2b) 9C: C[3033] = 6 . 3  
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Table I. Coherent States of  9Li, 9C 

1205 

9Li 9 C 

p =  - + p =  - + 

s = + - s = - + 9Li '~C CI33o3 I 
h l h 2 h 3 h 4  h 2 ~ l h 4 h 3  h 3 h 4 h  f~k2 h , l h 3 h 2 h  i or 0 "iT 0 O" 0 "iT 0 : Ci30331 Ct3o331 / 16 

6003* 0630 0360 3006 9i - 3 i  9i 3i 160i 10i 
6012 0621 1260 2106 7i - 5 i  7i 5i 80i 5i 
6021" 0612 2160 1206 5i - 7 i  5i 7i - 8 0 i  - 5 i  
6030 0603 3060 0306 3i - 9 i  3i 9i - 1 6 0 i  - 1 0 i  

5103" 1530 0351 3015 7i - i  7i i 40i 2.5i 
5112 1521 1251 21t5 5i - 3 i  5i 3i 40i 2.5i 
5121" 15t2 2151 1215 3i - 5 i  3i 5i - 4 0 /  - 2 , 5 i  
5130 1503 3051 0315 i - 7i i 7i - 40i - 2.5i 

4203* 2430 0342 3024 5i i 5i - i  - 3 2 i  - 2 i  
4212 2421 1242 2124 3i - i  3i i 16i i 
4221" 2412 2142 1224 i - 3 i  i 3i - 1 6 i  - i  
4230 2403 3042 0324 - i  - 5 i  - i  5i 32i 2i 

A 3303* 3330 0333 3033 A 
3i 3i 3i - 3 i  - 5 6 i  - 3 . 5 i  

3321" 3312 2133 t233 - i  - i  - i  + i  - 8 i  -½i  

which is manifestly CP-invariant because/ '3 --~ -T3 is accompanied by 'rr0 
---) -'rr0. Moreover, the matrix representations are identical up to a 
rearrangement of rows and columns. If (h2 + h3)  is chosen to be the number 
of nucleons with a negative spin and (hz + k4) the number with positive 
parity, then 

( r  o = i ( A  - 2(X2 + •3)), "IT 0 = - i ( A  - -  2(X2 + h4)) 

and the eigenvalues h of (2.2), shown in the last three columns of Table I, 
may be evaluated directly. These label the rows of Ctal found by using the 
matrix representation (2.1) and because the eigenvalues are the same the 
state labeling is confirmed even though they are reordered. 

In fact the matrix CIA 1 is generally reducible, but an irreducible submatrix 
Ix may be determined that includes the eigenvalue A and if A is odd, Ix is a 
(1, 1) form with the complex structure 

where B is a real, symmetric p × p matrix with coordinates k = kk0. It is 
therefore the horizontal subspace of a complex Grassmann or K ~ l e r  manifold 
[Kobayashi and Nomizu, 1969, Chapter IX, example (6.4)], but before we 
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can find the connect ions it is necessary to exponent ia te  using a theorem 
developed by de Wet (1994, 1995) which may be summar ized  as follows. 

Let the eigenvalues  of  B be {}'0; }"l; }'~; . . .  ; }"}; then it is always 
possible to express them in the canonical  form 

{0; 1; }`2; - - .  ; }'n} (2.4) 

where {}`2; • • - ; }', } are positive, by adding or subtracting an angular  momen-  
tum }'o and then dividing by },f = (},! - }'o)- This  fol lows because if B X  = 
RX, then 

(B - },o)X = (}, - },o)X 

It will appear below that exponent ia t ion of  the translated or canonical  spec- 
trum leads to a factor e ix°° that is responsible for vibrational modes  and 
curvature, while },f may be absorbed in 0 and does not change the shape of  
the geodesics although there is a f requency change. We now let (2.4) be the 
eigenvalues of  tx and define the orthogonal  functions 

F(IX) -- I~(IX 2 + l)(Ix 2 + } 2 ) . . .  (IX2 + }`2) = 0 

Fo(~) = F(tx)/Ix, Fk(I-Q - -  F(IX)/(IJ, 2 - t-  } , 2 ) ,  F,(Ix)Fg(ix) = 0 

Then  

G(IX) cos  },k0 ~ &(~) 
eV'° = IX i}MF~(i},~) + i - -  sin }'kO (2.5) 

k=0,1 .... k= 1,2... Fk(i} 'k)  

Proof." 

de~° ~. i}'kFk(t*) 
IX = dO 0=o = Ix k=~72.'"F~(i}'k)l'L -- IX k= 1,2 .... 

Kk(IX) (2.6) 

where 

i}'k Fk(I-L) 
K~(i-t) - - -  (2.7) 

&(i}M) IX 

is idempotent  and Ki(IX)Kk(tZ)  = 0 (de Wet, 1995); therefore •k  Kk(IX) is a 
decomposi t ion o f  unity and (2.6) follows. The  Kk(tz) are project ion operators 
onto the orthogonal  states o f  CLA 1. The  proof  of  (2.7) covers  the case 0 = 0 
and in the special case IX = i, only 

FI(IX) = i(i 2 + } ' ~ ) . . .  (i2 + },~) = FL(i) 

survives, since kk = 1, and we find the e lementary circular relation 

e iO = c o s  0 -1- i s i n  0 
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3. THE C U R V A T U ~  TENSOR 

We may write (2.5) 

e~0 = Zo(cos 0) + Z,(sin 0) = [ _ ~  Z Z,]  l Zo (3.1) 

because Z0 depends only on the even powers of }x and Zi only on the odd. 
Then, making use of the orthogonality condition Fj(tx)Fk(lx) = 0, it is easy 
to determine Z and hence find that 

T ~ Zi Zo- I = _ T' = bL tan hk0 (3.2a) 
k=l.2 .... Fk(ihk) 

TF t = ~,  Kk(la,) tan2kk0 (3.2b) 
k =  t ,2  .... 

Now the metric on a complex Grassmann manifold is 

d T  dT '  
ds 2 = Tr (1 + T'F') (1 + /T ' )  (3.3) 

where T', dT '  are the conjugate transposes of T, d T  (Kobayashi and Nomizu, 
1969, Chapter IX, §6; Wong, 1967). Using (3.2), this is simply the fiat 
measure carded by a toms, namely 

p 

ds 2 = ~ ,  dzk d~k, Zk = ihkO (3.4) 
k =  1,2  .... 

However, a translation to the canonical form (2.4) introduces the factor tan 
hot, so (3.2) becomes 

T = ~ tan ho0 ~] i(F~(l~)/~) tan h~O (3.5a) 
,=l,z .... Fk(ih~) 

IT '  = tan2ko0 ~] Kk(Ix) tan2kk0 (3.5b) 
k 

(de Wet, 1995). The manifold is now conformal and we can find the regions 
of very large positive curvature. To do this, write (3.3) 

ds 2 = g~z d(kkO) d ( - k k O )  

= d(kk0) d ( - k k O ) ~ K k ( ~ ) g ( h k O ) ~ K ~ ( - ~ ' ) g ( - h k O ) k  k 

with 

g(hkO) = --g(--kkO) = tan ho0 sec~hk0/(l + tan2ho0 tan2h~0) (3.6) 
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Here Ix = _g t ,  K~(g') = K~(IX), and k = h~0 are the coordinates of the 
matrix B in (2.3), k = --hk0, and +__ih~O are the coordinates of Ix. The only 
nonvanishing components of  the affine connection are 

0 - 0 
Fb~k = g~ -~ gkL F ~  = g~ -~ g~k (3.7) 

with b = )toO, b = - h o 0  (Green et al., 1988, §15.3.3). The manifold is Ricci 
flat and is a Calabi-Yau space, but the sectional curvature is 

02gk~ ~ 02ge'i 
K = Rkkkk -- Ok O-k ~ Oe 0-~ (3.8) 

Then by (3.6) 

where 

02gk~ tX 

Og(kkO) Og(-k,O) 
G(kk0) - - -  - 

O(XkO) 0(-Xk0) 

2 sec2hk0 tanhk0 tanho0 (1 -- tan2ho 0) 

(1 + tan2hk0 tan2ho0) 2 

The boundaries of Fig. 1 are characterized by t ---- tan ho0 = 0, - 1, ~, where 
G(hk0) = 0 indicates an infinite radius of curvature; otherwise in the case 
of 9Li a direct evaluation of 

using the matrix representation of  de Wet (1995) yields unity for each of the 
k terms summed over the p diagonal elements (IX/hk)KAIX). Therefore the 
second term of (3.8) is simply --~Zk GZ(ktO), but a small correction is intro- 
duced by the first term, where (ix/kk)Kk(tX) are the coefficients ak of  the 
element 4,4 of  (3.1), namely 

1{ 7 } 
1~14, 4 = ~ 15 + ~ ak COS k~0 cos ko0 

k= 1,2 .... 

0 5 4 
_ 1 15 + 18 cos + 10cos 0 + 3 c o s 0  + cos 0 

128 E 

+ 6 cos 
3 5 "1 5 

0 + 30 c o s ~ 0  + 45 cos 5 0 [ c o s ~ 0  (3.10a) 
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This follows from a straightforward application of (2.5) to 9Li with the 
canonical eigenvalues {0; 1/2; 5/6; I; 4/3; 3/2; 5/2, 5}. The correction is 
then just -(a~G(hkO)/128) 2 for each k. 

As stated in the introduction, there are six peaks, which occur at the 
points 1 = 540 ° - 273 °, 2 = 540 ° ___ 165 °, 3 = 540 ° __. 57 ° of Fig. 1 owing 
to rotational symmetry about X4 = -Xs. If we assume that at these points 
the principal radii of curvature are both equal to R, then, to the scale of Fig. 
1, R = 64/K ~/2. These radii are drawn to half scale near the peaks of Fig. 2, 
which may be considered to be a sketch of the cross section under a geodesic 
OABCO. Moreover, the contributions to K2, Kt, and K3 come almost exclu- 
sively from a single term G(hkO), where kk is I/2, 4/3, and 3/2, respectively. 
But reference to Table I shows that these eigenvalues label the ground state 
[A] and the first excited states of 9Li with spins tr0/2i of 3/2, !1/21. The 
smaller peaks at the origin O have contributions from several h~ and possibly 
do not degenerate into points when Yang-Mills symmetry is broken. However, 
reference to (3.9) and Fig. 2 confirms that the point 2 is also characterized 
by hk = 0, being the intersection of a zero and a positive curvature, which 
is precisely the index requirement corresponding to broken symmetry. 

Finally the closed geodesic of Fig. 1 is constructed by means of Corollary 
2.5 of Kobayashi and Nomizu (1969, Chapter X), namely by exponentiation 
of (2.3) and then plotting the wave function 

X4 ~ q~4.1z = sin ~ 0/128 ~ ak sin h~O (3.lOb) 
k=l,2 .... 

against its conjugate 

X 5 ~ ~1/5,12 = - X 4 ( 1 0 8 0  ° - 0 )  

characterized by sign changes of a3, a4, and a7. This geodesic lies over the 
peaks 0, 1, 2, and 3. 

4. CONCLUSIONS 

The spin manifold analyzed in this contribution is K~ihler and Ricci fiat. 
It is therefore a twistor space as defined by Lawson and Michelsohn (1989, 
Chapter IV, §9) and as such has a decomposition into vertical and horizontal 
subspaces on a tangent plane. This decomposition is (3. I), and (2.3) belongs 
to a horizontal subspace. 
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