Nuclear Calabi-Yau Space

J. A. de Wet¹

Received October 30, 1995

In this note a Calabi-Yau manifold already found for ⁹Li will be shown to carry an Euler number of six if Yang-Mills symmetry is broken. Not only does this specify the correct number of generations of quarks and leptons, but peaks on the manifold are associated with the lowest eigenvalues of a CP-invariant Dirac spin operator $C_{1\text{Al}}$.

1. INTRODUCTION

If one seeks a configuration of the form $M^4 \times K$ where M^4 is fourdimensional Minkowski space and K a compact Riemannian six-dimensional manifold, then the only way of modeling the space-time geometry of superstrings is for K to be a Calabi-Yau space, specifically, a compact threedimensional complex manifold with a Ricci flat Kähler metric.

De Wet (1995) has shown that a spin manifold that carries an odd number of fermions is Calabi-Yau with positive sectional curvature, and ⁹Li was taken as an example where it was found possible to calculate the metric tensor and therefore the connections which are the Yang-Mills gauge field responsible for the strong, weak, and electromagnetic interactions. This manifold will also" be found to be a twistor space according to the criteria of Lawson and Michelsohn (1989, Chapter IV, §9). The twistor can be shown to be a vibrating torus by making use of a theorem introduced in Section 2 that enables one to exponentiate a CP -invariant Dirac operator C_{IA} that is a function of the spins and parities of any odd-A nucleus.

Closed geodesics can be generated from the harmonics of $exp(C_[A]θ)$ as shown in Fig. 1 which depicts a quadrapole.

Normally the Dirac matrix is a differential operator S such that the Laplace-Beltrami operator Δ is S^2 and the zero modes of S are the harmonic

¹ Box 514, Plettenberg Bay, 6600 South Africa.

1201

Fig. 1. Geodesics on the manifold of 9Li, 9C.

differential forms ω^p given by $\Delta \omega^p = 0$. The number of such p forms is the Betti number b_p , from which it follows that the index of S is half of the Euler characteristic χ of the manifold (see, for example, Green *et al.*, 1988, **Chapter 14).**

Although the CP-invariant operator $C_{[A]}$ is not a differential operator, the $exp(C_{\text{AA}}\theta)$ are harmonics, so it makes sense to determine the Euler characteristic of the associated spin manifold and see how χ is related to the lowest eigenvalues of $C_{\{A\}}$. This is the purpose of this paper, because $\chi/2$ is also the number N_{gen} of fermion generations identical in their gauge quantum **numbers and should be three.**

Actually in the case of a torus $x = 0$, but by examining the curvature, **peaks or "horns" can be found associated with the three lowest spins of** $C_{[A]}$

(which label the lowest energy levels). These could represent instantons that become quarks or leptons at energies sufficiently high to break Yang-Mills symmetry. Then the horns would be singularities with infinite curvature and the manifold would become an orbifold with an Euler characteristic of three. One possible point is numbered 2 in Fig. 2 and a closed loop around this singularity would be trapped and add an Euler characteristic of unity. The point 2 can also rotate about $X_4 = -X_5$ (Fig. 1) to yield another Euler number and there are two similar points 1 and 3, positioned in Fig. 1, to make a total of six. Physically the curvature is a measure of the strength of the Yang-Mills field, which becomes infinite when the symmetry is broken, and quarks and leptons appear at sufficiently high energies. The sectional curvature of the ⁹Li manifold is calculated in Section 3.

2. THE MATRIX EXPONENTIAL THEOREM

It was shown by de Wet (1994) that the tensor product of self-representations of the quaternion Dirac ring decomposes into left modules $C_{[\lambda]}P_{[\lambda]}$ each of which represents a nuclear state $[\lambda]$ with a definite spin, charge, and parity. This is called a Dirac bundle by Lawson and Michelsohn and is of course an example of the nuclear spectral theorem. Specifically, $[\lambda]$ is a partition

$$
A = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4, \qquad [\lambda] \equiv [\lambda_1 \lambda_2 \lambda_3 \lambda_4]
$$

of the atomic number such that $(\lambda_3 + \lambda_4)$ is the number of nucleons with positive charge, $(\lambda_2 + \lambda_3)$ the number with a given spin σ , and $(\lambda_2 + \lambda_4)$ the number with a given parity π . The possible states of ⁹Li, ⁹C, which may be shown to be coherent, are set out in Table I and these label the rows of the (1, 1) form (2.3).

The operators
$$
C_{\{\lambda\}}
$$
 may be expressed in terms of the generators
\n $\sigma_i = E_N \otimes {}^P\Gamma_i + {}^N\Gamma_i \otimes E_P$, $\pi_i = E_N \otimes {}^P\Gamma_i - {}^N\Gamma_i \otimes E_P$, $i = 1, 2, 3$ (2.1)

of O_4 . Here ${}^P\Gamma_i$, ${}^N\Gamma_i$ are $(P + 1)$ -, $(N + 1)$ -dimensional Lie operators of SO_3 ; E_p , E_N are $(P + 1)$, $(N + 1)$ unit matrices, and σ_i is the spin angular momentum matrix for a coupled system of P protons and N neutrons. It is also an example of the natural decomposition of a Clifford algebra (Lawson and Michelsohn) and is why the nucleus can be modeled by quaternions.

It is then possible to find the specific operator C_{A} which is also CP invariant. If $\sigma_0 = 2\sigma_1$ and $\pi_0 = 2\pi_1$, then an example is the Wigner series

$$
{}^{9}\text{Li:} \quad C_{[3303]} = \frac{1}{6} \left(\sigma_0^3 + \pi_0^3 \right) + \frac{3}{2} \left(\sigma_0 \pi_0^2 + \sigma_0^2 \pi_0 \right) + \frac{17}{3} \left(\sigma_0 + \pi_0 \right) \quad (2.2a)
$$

$$
{}^{9}C: \quad C_{[3033]} = \frac{1}{6} \left(\sigma_0^3 - \pi_0^3 \right) + \frac{3}{2} \left(\sigma_0 \pi_0^2 - \sigma_0^2 \pi_0 \right) + \frac{17}{3} \left(\sigma_0 - \pi_0 \right) \quad (2.2b)
$$

de Wet

1204

9 Li		9C							
$p =$ $\ddot{}$ $s =$	$+$	p S.	$\ddot{}$ $\ddot{}$	9Li		۹C		$C_{13,031}$	
$\lambda_1\lambda_2\lambda_3\lambda_4$	$\lambda_2\lambda_1\lambda_4\lambda_1$	$\lambda_3\lambda_4\lambda_1\lambda_2$	$\lambda_4\lambda_3\lambda_2\lambda_1$	σ_0	π_0	σ_0	π_0	$= C_{[3033]}$	$C_{[3033]}/16$
6003*	0630	0360	3006	91	$-3i$	9i	3i	160i	10i
6012	0621	1260	2106	7i	$-5i$	7i	5i	80i	5i
6021*	0612	2160	1206	51	$-7i$	5i	7i	$-80i$	$-5i$
6030	0603	3060	0306	3i	–9i	3i	9i	$-160i$	$-10i$
5103*	1530	0351	3015	7i	$-i$	7i	i	40i	2.5i
5112	1521	1251	2115	5i	$-3i$	5i	3i	40i	2.5i
$5121*$	1512	2151	1215	3i	$-5i$	3i	5i	$-40i$	$-2.5i$
5130	1503	3051	0315	i	$-7i$	-i	7i	-40i	$-2.5i$
4203*	2430	0342	3024	5i	i	5i	$-i$	$-32i$	$-2i$
4212	2421	1242	2124	3i	$-i$	3i	i	16i	İ
$4221*$	2412	2142	1224	i	$-3i$	\cdot i	3i	$-16i$	— i
4230	2403	3042	0324	$-i$	$-5i$	$-i$	5i	32i	2i
Λ 3303*	3330	0333	3033 A						
				3i	3i	3i	$-3i$	– 56 i	$-3.5i$
3321*	3312	2133	1233	$-i$	-i	$-i$	$+i$	-8i	$-\frac{1}{2}i$

Table I. Coherent States of ⁹Li, ⁹C

which is manifestly CP-invariant because $T_3 \rightarrow -T_3$ is accompanied by π_0 $\rightarrow -\pi_0$. Moreover, the matrix representations are identical up to a rearrangement of rows and columns. If $(\lambda_2 + \lambda_3)$ is chosen to be the number of nucleons with a negative spin and $(\lambda_2 + \lambda_4)$ the number with positive parity, then

$$
\sigma_0 = i(A - 2(\lambda_2 + \lambda_3)), \quad \pi_0 = -i(A - 2(\lambda_2 + \lambda_4))
$$

and the eigenvalues λ of (2.2), shown in the last three columns of Table I, may be evaluated directly. These label the rows of $C_{[A]}$ found by using the matrix representation (2.1) and because the eigenvalues are the same the state labeling is confirmed even though they are reordered.

In fact the matrix C_{A1} is generally reducible, but an irreducible submatrix μ may be determined that includes the eigenvalue Λ and if A is odd, μ is a $(1, 1)$ form with the complex structure

$$
\begin{bmatrix} 0 & B \\ -B & 0 \end{bmatrix}
$$
 (2.3)

where B is a real, symmetric $p \times p$ matrix with coordinates $k = \lambda_k \theta$. It is therefore the horizontal subspace of a complex Grassmann or Kähler manifold [Kobayashi and Nomizu, 1969, Chapter IX, example (6.4)], but before we

can find the connections it is necessary to exponentiate using a theorem developed by de Wet (1994, 1995) which may be summarized as follows.

Let the eigenvalues of B be $\{\lambda_0; \lambda'_1; \lambda'_2; \ldots; \lambda'_n\}$; then it is always possible to express them in the canonical form

$$
\{0; 1; \lambda_2; \ldots; \lambda_n\} \tag{2.4}
$$

where $\{\lambda_2; \ldots; \lambda_n\}$ are positive, by adding or subtracting an angular momentum λ_0 and then dividing by $\lambda_f = (\lambda_1 \pm \lambda_0)$. This follows because if $BX =$ λX , then

$$
(B - \lambda_0)X = (\lambda - \lambda_0)X
$$

It will appear below that exponentiation of the translated or canonical spectrum leads to a factor $e^{i\lambda_0\theta}$ that is responsible for vibrational modes and curvature, while λ_f may be absorbed in θ and does not change the shape of the geodesics although there is a frequency change. We now let (2.4) be the eigenvalues of μ and define the orthogonal functions

$$
F(\mu) = \mu(\mu^2 + 1)(\mu^2 + \lambda_2^2) \dots (\mu^2 + \lambda_n^2) = 0
$$

$$
F_0(\mu) = F(\mu)/\mu, \qquad F_k(\mu) = F(\mu)/(\mu^2 + \lambda_k^2), \qquad F_j(\mu)F_k(\mu) = 0
$$

Then

$$
e^{\mu\theta} = \mu \sum_{k=0,1,\dots}^{n} \frac{F_k(\mu) \cos \lambda_k \theta}{i\lambda_k F_k(i\lambda_k)} + i \sum_{k=1,2,\dots}^{n} \frac{F_k(\mu)}{F_k(i\lambda_k)} \sin \lambda_k \theta \qquad (2.5)
$$

Proof."

$$
\mu = \frac{de^{\mu\theta}}{d\theta}\bigg|_{\theta=0} = \mu \sum_{k=1,2,\dots}^{n} \frac{i\lambda_k F_k(\mu)}{F_k(i\lambda_k)\mu} = \mu \sum_{k=1,2,\dots}^{n} K_k(\mu) \tag{2.6}
$$

where

$$
K_k(\mu) = \frac{i\lambda_k F_k(\mu)}{F_k(i\lambda_k)\mu} \tag{2.7}
$$

is idempotent and $K_i(\mu)K_k(\mu) = 0$ (de Wet, 1995); therefore $\Sigma_k K_k(\mu)$ is a decomposition of unity and (2.6) follows. The $K_k(\mu)$ are projection operators onto the orthogonal states of $C_{[\Lambda]}$. The proof of (2.7) covers the case $\theta = 0$ and in the special case $\mu = i$, only

$$
F_1(\mu) = i(i^2 + \lambda_2^2) \dots (i^2 + \lambda_n^2) = F_1(i)
$$

survives, since $\lambda_k = 1$, and we find the elementary circular relation

$$
e^{i\theta} = \cos \theta + i \sin \theta
$$

Nuclear Calabi-Yau Space ¹²⁰⁷

3. THE CURVATURE TENSOR

We may write (2.5)

$$
e^{\mu\theta} = Z_0(\cos\theta) + Z_1(\sin\theta) = \begin{bmatrix} Z_0 & Z_1 \\ -Z_1 & Z_0 \end{bmatrix}
$$
 (3.1)

because Z_0 depends only on the even powers of μ and Z_1 only on the odd. Then, making use of the orthogonality condition $F_j(\mu)F_k(\mu) = 0$, it is easy to determine Z and hence find that

$$
T \equiv Z_1 Z_0^{-1} = -T' = \mu \sum_{k=1,2,...}^{n} \frac{i(F_k(\mu)/\mu)}{F_k(i\lambda_k)} \tan \lambda_k \theta
$$
 (3.2a)

$$
T\overline{T}^{\prime} = \sum_{k=1,2,...}^{n} K_{k}(\mu) \tan^{2} \lambda_{k} \theta
$$
 (3.2b)

Now the metric on a complex Grassmann manifold is

$$
ds^2 = \text{Tr}\,\frac{dT}{(1+T\overline{T}')}\,\frac{d\overline{T}'}{(1+T\overline{T}')}\tag{3.3}
$$

where \overline{T}' , $d\overline{T}'$ are the conjugate transposes of T, dT (Kobayashi and Nomizu, 1969, Chapter IX, §6; Wong, 1967). Using (3.2), this is simply the fiat measure carried by a torus, namely

$$
ds^2 = \sum_{k=1,2,...}^p dz_k \ d\overline{z}_k, \qquad z_k = i\lambda_k \theta \tag{3.4}
$$

However, a translation to the canonical form (2.4) introduces the factor tan $\lambda_0 t$, so (3.2) becomes

$$
T = \mu \tan \lambda_0 \theta \sum_{k=1,2,...}^{n} \frac{i(F_k(\mu)/\mu)}{F_k(i\lambda_k)} \tan \lambda_k \theta
$$
 (3.5a)

$$
T\overline{T}^{\prime} = \tan^{2}\lambda_{0}\theta \sum_{k} K_{k}(\mu) \tan^{2}\lambda_{k}\theta \qquad (3.5b)
$$

(de Wet, 1995). The manifold is now conformal and we can find the regions of very large positive curvature. To do this, write (3.3)

$$
ds^2 = g_{k\bar{k}} d(\lambda_k \theta) d(-\lambda_k \theta)
$$

= $d(\lambda_k \theta) d(-\lambda_k \theta) \sum_k \frac{\mu}{\lambda_k} K_k(\mu) g(\lambda_k \theta) \sum_k \frac{\overline{\mu}'}{\lambda_k} K_{\bar{k}}(\overline{\mu}') g(-\lambda_k \theta)$

with

$$
g(\lambda_k \theta) = -g(-\lambda_k \theta) = \tan \lambda_0 \theta \sec^2 \lambda_k \theta / (1 + \tan^2 \lambda_0 \theta \tan^2 \lambda_k \theta) \quad (3.6)
$$

Here $\mu = -\overline{\mu}'$, $K_{\overline{k}}(\overline{\mu}') = K_{k}(\mu)$, and $k = \lambda_{k} \theta$ are the coordinates of the matrix B in (2.3), $\bar{k} = -\lambda_k \theta$, and $\pm i\lambda_k \theta$ are the coordinates of μ . The only nonvanishing components of the affine connection are

$$
\Gamma_b{}^k{}_k = g^{k\bar{k}} \frac{\partial}{\partial b} g_{k\bar{k}}, \qquad \Gamma_b{}^{\bar{k}}{}_k = g^{k\bar{k}} \frac{\partial}{\partial \bar{b}} g_{\bar{k}k} \tag{3.7}
$$

with $b = \lambda_0 \theta$, $\overline{b} = -\lambda_0 \theta$ (Green *et al.*, 1988, §15.3.3). The manifold is Ricci flat and is a Calabi-Yau space, but the sectional curvature is

$$
K = R_{k\bar{k}k\bar{k}} = \frac{\partial^2 g_{k\bar{k}}}{\partial k \partial \bar{k}} - \sum_{p} \frac{\partial^2 g_{e\bar{e}}}{\partial e \partial \bar{e}}
$$
(3.8)

Then by (3.6)

$$
\frac{\partial^2 g_{k\bar{k}}}{\partial k \ \partial \bar{k}} = \sum_{k} \left(\frac{\mu}{\lambda_k} K_k(\mu) \right) \left(\frac{\overline{\mu}'}{\lambda_k} K_k(\mu) \right) G^2(\lambda_k \theta) \tag{3.9}
$$

where

$$
G(\lambda_k \theta) = \frac{\partial g(\lambda_k \theta)}{\partial(\lambda_k \theta)} = \frac{\partial g(-\lambda_k \theta)}{\partial(-\lambda_k \theta)}
$$

=
$$
\frac{2 \sec^2 \lambda_k \theta \tan \lambda_k \theta \tan \lambda_0 \theta (1 - \tan^2 \lambda_0 \theta)}{(1 + \tan^2 \lambda_k \theta \tan^2 \lambda_0 \theta)^2}
$$

The boundaries of Fig. 1 are characterized by $t \equiv \tan \lambda_0 \theta = 0, \pm 1, \infty$, where $G(\lambda_k\theta) = 0$ indicates an infinite radius of curvature; otherwise in the case of 9Li a direct evaluation of

$$
\sum_{p}\left(\frac{\mu}{\lambda_{k}}K_{k}(\mu)\right)\left(\frac{\overline{\mu}'}{\lambda_{k}}K_{k}(\mu)\right)
$$

using the matrix representation of de Wet (1995) yields unity for each of the k terms summed over the p diagonal elements $(\mu/\lambda)K_1(\mu)$. Therefore the second term of (3.8) is simply $-\sum_k G^2(\lambda_k\theta)$, but a small correction is introduced by the first term, where $(\mu/\lambda_k)K_k(\mu)$ are the coefficients a_k of the element 4,4 of (3.1), namely

$$
\psi_{4,4} = \frac{1}{128} \left\{ 15 + \sum_{k=1,2,...}^{7} a_k \cos \lambda_k \theta \right\} \cos \lambda_0 \theta
$$

= $\frac{1}{128} \left\{ 15 + 18 \cos \frac{\theta}{2} + 10 \cos \frac{5}{6} \theta + 3 \cos \theta + \cos \frac{4}{3} \theta \right\}$
+ $6 \cos \frac{3}{2} \theta + 30 \cos \frac{5}{2} \theta + 45 \cos 5\theta \right\} \cos \frac{5}{3} \theta$ (3.10a)

Nuclear Calabi-Yau Space 1209

This follows from a straightforward application of (2.5) to ⁹Li with the canonical eigenvalues $\{0; 1/2; 5/6; 1; 4/3; 3/2; 5/2, 5\}$. The correction is then just $-(a_kG(\lambda_k\theta)/128)^2$ for each k.

As stated in the introduction, there are six peaks, which occur at the points $1 = 540^{\circ} \pm 273^{\circ}$, $2 = 540^{\circ} \pm 165^{\circ}$, $3 = 540^{\circ} \pm 57^{\circ}$ of Fig. 1 owing to rotational symmetry about $X_4 = -X_5$. If we assume that at these points the principal radii of curvature are both equal to R , then, to the scale of Fig. 1, \overline{R} = 64/K^{1/2}. These radii are drawn to half scale near the peaks of Fig. 2, which may be considered to be a sketch of the cross section under a geodesic *OABCO.* Moreover, the contributions to K_2 , K_1 , and K_3 come almost exclusively from a single term $G(\lambda_k\theta)$, where λ_k is 1/2, 4/3, and 3/2, respectively. But reference to Table I shows that these eigenvalues label the ground state [A] and the first excited states of ⁹Li with spins $\sigma_0/2i$ of 3/2, $|1/2|$. The smaller peaks at the origin O have contributions from several λ_k and possibly do not degenerate into points when Yang-Mills symmetry is broken. However, reference to (3.9) and Fig. 2 confirms that the point 2 is also characterized by $\lambda_k = 0$, being the intersection of a zero and a positive curvature, which is precisely the index requirement corresponding to broken symmetry.

Finally the closed geodesic of Fig. 1 is constructed by means of Corollary 2.5 of Kobayashi and Nomizu (1969, Chapter X), namely by exponentiation of (2.3) and then plotting the wave function

$$
X_4 = \psi_{4,12} = \left(\sin\frac{5}{3} \theta/128\right) \sum_{k=1,2,...}^{7} a_k \sin \lambda_k \theta \tag{3.10b}
$$

against its conjugate

$$
X_5 \equiv \psi_{5,12} = -X_4(1080^\circ - \theta)
$$

characterized by sign changes of a_3 , a_4 , and a_7 . This geodesic lies over the peaks 0, 1, 2, and 3.

4. CONCLUSIONS

The spin manifold analyzed in this contribution is Kähler and Ricci flat. It is therefore a twistor space as defined by Lawson and Michelsohn (1989, Chapter IV, §9) and as such has a decomposition into vertical and horizontal subspaces on a tangent plane. This decomposition is (3. I), and (2.3) belongs to a horizontal subspace.

REFERENCES

De Wet, J. A. (1994). *International Journal of Theoretical Physics,* 33, 1887. De Wet, J. A. (t995). *International Journal of Theoretical Physics,* 34, 1065.

- Green, M. B., Schwarz, J. H., and Witten, E. (1988). *Superstring Theor);* Cambridge University Press, Cambridge.
- Kobayashi. S., and Nomizu, K. (1969). *Foundations of Differential Geometry*, Wiley-Interscience, New York.
- Lawson, H. B,, and Michelsohn, M.-L. (1989). *Spin Geometr);* Princeton University Press, Princeton, New Jersey.
- Wong Yung-Chow (1967). *Proceedings of the National Academy of Sciences of the USA,* 57, 589.